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1. FIRST-ORDER DIFFERENTIAL EQUATIONS

1.1 Preliminary Concepts

1. General and particular solutions: For F(x,y,y')=0, any equation involving a first

derivative; y =¢(x) suchthat F=0.
Example: y'+y=2 = y(X)=2+ce™”
xy'=-y = y(x)=c/x
y'—cosx=0 = y(X)=sinx+c

2. Implicitly defined solutions

2xy° +2

2.,3 4y _
———— = Xy’+2x+2e"7 =c
3xy? +8e"

Example: y'=-—

3. Integral curves: a graph of a solution

4. The initial value problem: F(x, y, y') =0, initial condition: y(x,) =Y,

Example: y'=3y, y(0)=57 = y(x)=5.7e*

5. Direction fields: F(x,y,y)=0=y'=F(x, y)
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1.2 Separable Equations

1. Separable differential equation: y'= A(X)B(Y)

Example: y'=y’e™ = y=

RC circuits: Charging: E=|R+% — Q=CE(l-e%)
Discharging: IR:g - Q=Q,e%®

1.3 Linear Differential Equations: y'(x) + p(x)y(x) = q(x), integrating factor: g P
Example: y'+y=sin(x) = y= %[sin(x) —cos(x)]+Ce ™. y =3x° —%, y@) =5.

1.4 Exact Differential Equations

1. Potential function: For M (X, y)+ N(X, y)y'=0, we can find a ¢(x, y) such that 2—¢ =M
X

and %0: N; ¢ is the potential function; M(X, y)+ N(X, y)y'=0 is

exact.

2. Exact differential equation: a potential function exists; general solution: ¢(X, y)=c.

2xy° +2

Example: y'=——>2 "=
ble- Y 3x%y?® +8e”
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3. Theorem: Test for exactness: @ = @
oy  oX

Example: , x* +3xy + (4xy +2xX)y' =0. e*siny—2x+(e*cosy+1)y’ =0.
1.5 Integrating Factors
1. Integrating factor: u(x, y) #0 suchthat &M (X, y)+ N(Xx, y)y'=0 isexact.

Example: y* —6xy + (3xy —6x%)y’ =0.

o(uM) _ o(uN)
OX

2. How to find integrating factor:
Example: x—xy—-y'=0.
3. Separable equations and integrating factors: u = %

4. Linear equations and integrating factors: el "®”

1.6 Homogeneous and Bernoulli Equations

1. Homogeneous differential equation: y'= f(l) ;let y=ux= separable.
X

2

Example: xy'= R y.
X

2. Bernoulli equation: y+P(X)y =R(X)y*; a=0= linear; o =1= separable; otherwise,
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let v=y"* = linear

Example: y'+ = 3x?y°
X
2. HIGHER ORDER LINEAR EVENS

2.1 Preliminary Concepts

1. F(x,y, Y y") =0, an equation that contains a second derivative, but no higher derivative.
2. Linear second-order differential equations: R(X)y"+P(X)y'+Q(x)y = S(X).
2.2 Theory of Solutions
1. The initial value problem: y"+p(x)y+q(x)y = f(X); y(X,)=A, y'(X,)=B.
Example: y"—12x=0,y(0)=3,y'(0)=-1 =  y=2x>—-x+3.
2. The homogeneous linear ODESs of 2" order: y"+p(X)y'+q(X)y = 0.

3. Theorem: Let y, and y, be solutions of y"+p(X)y+q(x)y=0 on an interval I. Then

any linear combination of these solutions, i.e., y=c,y, +C,Y,, is also a solution.

4. Linear dependence: Two functions f and g are linearly dependent on an open interval | if, for

some constant c, either f(x) =cg(x) forall xin I, or g(x)=cf(x) forall xinl. Linear

independence: If f and g are not linearly dependent on I.

Example: y"+y=0 = y, =C0SX, Y, =SinX.
4
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5. Wronskian Test: Let y, and y, be solutions of y"+p(x)y+q(x)y =0 on an open interval

I.  Then, (1) Either W(x)=0 forall xinl,or W(x)=0 forall xinl. (2) y, and v,

are linearly independent on I if and only if W(x) =0 on I, where W(x) =

Y1 s
Y1 Vs

y"+xy =0 = y121—1X3+ 1 X6 _ 1 °
Example: 6 180 12960
1 4 1 .7 1 10
Y, =X——x"+ X" — X
12 504 45360

6. Theorem: Let y, and y, be linearly independent solutions of y"+p(x)y'+q(x)y=0 on

an open interval I. Then, every solution of this differential equation on | is a linear

combination of y, and v,.

7. Definition: Let y, and y, be solutions of y"™+p(x)y+q(x)y =0 on an open interval I.
(1) y, and y, form a fundamental set (or a basis) of solutions on I if y, and y, are
linearly independent on I.  (2) When y, and y, form a fundamental set of solutions, we
call cy,+c,y, , with ¢, and c, arbitrary constants, the general solution of the

differential equation on 1.

8. The nonhomogeneous equations: y"+p(X)y'+q(x)y = f(X).

9. Theorem: Let y, and y, beafundamental set of solutions of y"+p(x)y'+q(x)y =0 onan
open interval 1. Let y, 6 be any solution of y"+p(x)y+q(x)y= f(x) on I. Then, for
any solution ¢ of y"+p(X)y+q(x)y = f(x), there exist numbers ¢, and c, such that

P=CY +CY, +Y,.
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2.3 Reduction of Order: Given y"+p(x)y+q(x)y =0, if we know a first solution vy,, then a

second solution can be the form 'y, =u(X)y;.
Example: y"+4y' +4y=0,y,=e> = y,=xe

2.4 The Constant Coefficient Homogeneous Linear Equation: y"+Ay'+By =0, A and B are

numbers.

1. Characteristic equation: A + A1+ B =0 obtained by substituting y =e”* into

y"+Ay'+By =0.

_ —A+JA*-4B

2. Case 1. A’ —4B > 0: The general solution is y(x) =c,e® +c,e™; a ,

2
b " A—+A?-4B
5 :
Example: y"—y'—-6y=0 =  y=ce*+c,e*.
3. Case 2. A*—4B =0: The general solution is y(x) =c,e™ +c,xe™; a= —g.
Example: y"—6y'+9y=0 =  y=ce¥ +c,xe*.
4. Case 3. A’ —4B <0: The general solution is y(x) = c,e®®"* +¢c,e®*; p= —? ,
_ V4B - A?
—
Example: y"+2y' +6y=0 =  y=ce ¢ eI
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5. An alternative general solution in the complex root case: y(x) = e (c, cos(gx) +c, sin(gx)) .

Maclaurin expansions: e* = Zix”, cosx =y (=1) X2, sinx =) (=1) x2,
n=0 (Zn)l n=0 (2n +1)l

Euler’ formula: e™ =cosx+isinx.
Example: y"+2y'+6y=0 = y=e"(c, cos(+/5%) + c, sin(~/5x)) .

2.5 Euler’s (Euler-Cauchy) Equation: x?y"+Axy'+By =0, let (i) y=x* = Characteristic
equation: 4> +(A-1)A+B=0,or (ii)let x=¢€', t=Inx, Y({)=y(E') =

Y"+(A-1)Y'+BY =0.

1. Case 1. (A—1)?> —4B >0: The general solution is y(x) =¢,X* +¢,x";
1 2

- A)++/(A-1)2 — 4B ,_ - A)—(A-1)% — 4B
_ _ > .

2 )

Example: x?y"+2xy’—6y=0 =  y=CX " +C,X".

2. Case 2. (A—1)> —4B =0: The general solution is y(x) =c,x* +c,x*Inx; a= %

Example: x’y"-5xy’+9y=0 =  y=c,x’+c,x’Inx.

3. Case 3. (A—l)2 —4B < 0: The general solution is y(x) = x"(c, cos(gIn x) +c, sin(qIn x));
1 2
1-A

4B - (A-1)°

2 2

Example: x*y”+0.6xy’+16.04y=0 = y=x%(c,cos(4Inx)+c,sin(4Inx)).
7
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2.6 The Nonhomogeneous Equation: y"+p(x)y+q(x)y = f(x), general solution y=y, +y_.

1. The method of variation of parameters: let y =uy, +vy,, then simultaneously solve

u'y, +V'y, =0
Uy +vY, = £

y'+4y=secx,—-zld<x<rxld =

Example: ) ) 1 ) .
Yy = C, COS 2X + C, SiN 2X + COS X COS 2X + (Sin X - In[sec x + tan x|) sin 2x

2. The method of undetermined coefficients: only applied while p(x) and q(x) are constant, i.e.,

y"+Ay'+By = f(X).

Term in r(x) Choice for y,(x)
ke™™ Ce™™
kx (n=10,1,--") Ko™ + K,_px" 1+ - 4+ Kix + K,
k cos wx

. }Kcoswx+Msinwx
k sin wx

ke** cos wx . )
ket i }e‘“(K cos wx + M sin wx)
e™ sin wx

Example: y"—4y=8x*-2x =  y=ce”+c,e™-2x° +%x—1.

-- Modification Rule: If a term in your choice for y, happens to be a solution of the

homogeneous ODE, multiply your choice of y, by x (or by x* if this solution

corresponds to a double root of the characteristic equation of the homogeneous ODE).
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Example: y"+2y'—-3y=8* = y=ce > +c,e*+2xe*.

y" -6y’ +9y =5e* = y=ce¥+c,xe* +gx2e3X

3. The principle of superposition: y"+p(X)y+q(x)y = f,(x)+ f,(x)+---+ f (x), vy, Is a

solution of y"+p(x)y+q(x)y = f;(x), then y , +y,, +---+y,, isasolution.

. 1
Example: y"+4y=x+2e* =  y=c,C0S2X+C,sin 2x+z(x+e’zx).
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3. HIGHER ORDER LINEAR ODES
3.1 Homogeneous Linear ODEs
1. F(x,y,Y, - y™)=0, anth order ODE if the nth derivative y™ = % of the unknown

function y(x) is the highest occurring derivative.

2. Linear ODE: y™ + p, (Y™™ +---+ p,(X)y' + po (XY = g(X).

3. Homogeneous linear ODE: y™ + p,,(X)y"™ +---+ p,(X)y'+ p,(X)y =0.

4. Theorem: Fundamental Theorem for the Homogeneous Linear ODE: For a homogeneous
linear ODE, sums and constant multiples of solutions on some open interval | are again

solutions on I. (This does not hold for a nonhomogeneous or nonlinear ODE!).

5. General solution: y=c,y, +-:--+C,Y,, where y,,---, y,is a basis (or fundamental system)

of solutions on I; that is, these solutions are linearly independent on I.

6. Linear independence and dependence: n functions vy,,---, y, are called linearly independent

n

on some interval | where they are defined if the equation k,y, +---+k,y, =0 on I implies

thatall k,,---, k, are zero. These functions are called linearly dependent on I if this

10



Dr. Akeel M. Kadim
Differential Equations
2nd Class

Al Karkh University of Science

College of Science

Medical Physics Dept.

equation also holds on | for some ki, ---, k, notall zero.

. d ! y d ? y . —2X -X X 2x
Example: +—5—>+4y=0. Sol. y=ce™ +c,e”" +c,e” +Cc,e”.
dx dx
7. Theorem: Let the homogeneous linear ODE have continuous coefficients p,(X),---, p,,(X)

on an open interval 1. Then n solutions vy,,---, y, on | are linearly dependent on 1 if and
only if their Wronskian is zero for some x=x, in I. Furthermore, if W is zero for x=x,,

then W is identically zero on I. Hence if there is an x, in | at which W is not zero, then
Y1, ---5 Y, arelinearly independent on I, so that they form a basis of solutions of

the homogeneous linear ODE on I.

yl y2 yn
Wronskian: W(y,, -, y,) = 311 y:2 y:n
Yooy e

8. Initial value problem: An ODE with n initial conditions y(x,)=K,, Y'(x,)=K, -,

y(nil) (Xo) = Kn—l .

3.2 Homogeneous Linear ODEs with Constant Coefficients

1. y®+a ,y"Y +...+ay +a,y=0: Substituting y=e”, we obtain the characteristic

equation A" +a A" +---+al+a, =0.

11
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(i) Distinct real roots: The general solution is y =c,e™ +---+c_e™

Example: y”-2y"—y'+2y=0. Sol. y=ce ™ +c,e* +c,e’.
(i) Simple complex roots: A =p=+qi, y, =e"cos(gx), y, =e"*sin(gx).
Example: y”—y”"+100y’'—100y =0. Sol.: y=c,e* +c,cos10x+c,sin10x.

(iii) Multiple real roots: If A is a real root of order m, then m corresponding linearly

independent solutions are: e™, xe™, x%™, ..., x"'e*.

Example: y® —3y® +3y” —y"=0. Sol.. y=c, +C,X+(C; +C,X+C;X)e".

(iv) Multiple complex roots: If A= p=+qi are complex double roots, the corresponding
linearly independent solutions are: e™cos(gqx) , e™sin(gx) , xe cos(gx) ,

xe P sin(gx) .

2. Convert the higher-order differential equation to a system of first-order equations.

6 4
d y—4d y+2ﬂ+15y=0.

Example:
P dx® dx* dx

3.3 Nonhomogeneous Linear ODEs

Loy® 4+ p ()Y +-+ p,(X)Y + p,(X)y = g(x), the general solution is of the form:

12
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y=Y,+Y,,Where y, isthe homogeneous solutionand y, isa particular solution.

2. Method of undermined coefficients
Example: y”+3y"+3y’ +y=30e*. Sol.. y=(c, +c,x+c,x*)e* +5x°e*.
k

. W
3. Method of variation of parameters: y =u,y, +---+u,y,, where u, = W k=1---,n.

1 11
Example: x*y” —3x’y” +6xy’—6y =x"Inx. Sol.: y:cl+c2x+csx2+Ex4(lnx—g).

13
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4. LAPLACE TRANSFORM

4.1 Definition and Basic Properties: initial value problem = algebra problem = solution of the

algebra problem = solution of the initial value problem

1. Definition (Laplace Transform): The Laplace transform £[f](s) = L we‘Stf(t)dt =F(s), for

all s such that this integral converges.

1 . 1
Examples: f(t)=e* = £[f](s)=——, s>a. g(t)=sint = L[f](s)= 5
s—a s°+1
2. Table of Laplace transform of functions
£ F(f) f(0) F(f)
1 1 1/ 7 S *
S COS W 52 I w2
2 " 1/s? 8 sin wt -
e s* + o
N
3 2 21/s3 9 cosh at 5 5
ST —d
4 t n! 10 b a
n=0,1,--) sl sinh at 52— a?
1@ I'(a + 1) at s —a
> (a positive) gatl H ¢ coswl (s — a)? + o
6 e ! 12 ™ sin wt A
’ s — d (s — a)? + o

3. Theorem (Linearity of the Laplace transform): Suppose £L[f](s) and £[g](s) are defined

14
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for s>a,and a and g arereal numbers. Then L[of + £9](s) = aF(s)+ SG(s) for

S>a.

4. Definition (Inverse Laplace transform): Given a function G, a function g such that £[g]=G

is called an inverse Laplace transform of G. In this event, we write

g=£L"'[G].

5. Theorem (Lerch): Let f and g be continuous on [0, «) and suppose that £[f]=£[g].

Then f=g.

6. Theorem: If L£'[F]=f and £'G]=g and « and B are real numbers, then

L aF + BG](s) =of + /4.
4.2 Solution of Initial Value Problems Using the Laplace Transform

1. Theorem (Laplace transform of a derivative): Let f be continuous on [0, «0) and suppose f'

is piecewise continuous on [0, k] for every positive k. Suppose also that

lime™*f(k)=0 if s>0. Then £[f'](s)=sF(s)— f(0).

k—o

2. Theorem (Laplace transform of a higher derivative): Suppose f, f',---, f"* are continuous

on [0,0) and f™ is piecewise continuous on [0, k] for every positive k.

Suppose also that lim e*fW(k)=0 for s>0andfor j=1,2,---,n—1. Then

L[ ™](s) =8"F(5) " £ (0) ~ 8" 2(0) —--—f "2 (0) — £ "2(0).

15
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1 5 4t
Examples: y'—-4y=1y(0)=1 = yzze 1
n 1 t 1 1 t 3 —t 7 =3t
y'+y'+3y=e;y(0)=0y'0)=2 = yzge +Ze —ge :

4.3 Shifting Theorems and the Heaviside Function

1. Theorem (First shifting theorem, or shifting in the s variable): Let £[f](s)=F(s) for
s>b>0. Let a be any number. Then L[e*f](s)=F(s—a) for s>a+b.
= L[F(s—a)]|=e*L'[F(s)]=e*f(t).

_ S-a
(s—a)® +b?’

4

Examples: £[e* cos(bt)] = _
g [ (bt)] s? +4s5+20

Find B‘{ } = e ?*sin4t.

2. Definition (Heaviside function): The Heaviside function (or unit step function) H is defined

by H(t)= 0 ift<O ~ H(t-a)= 0 ift<a
YU ifeso "1 iftza
y H(t — a)
1 ©, 1) o
> X > [
a
FIGURE 3.10 The Heaviside FIGURE 3.11 A shifted Heaviside
Sfunction H(t). Sfunction.
On-offeffect: H(t—a)gt)=1 ° "< Hi_aygt_a)=) O Tt
' W90 iftza’ =™ 5t-a) iftza

16
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f(t)
51 5i-- 51-
I
’ N [ /\ (
_, [
%2 ¢ Y 2w ar ¢ Y2 2o
S U LU
o (A) f(t)=5sint (B) fiH)ult - 2) (C) flt =2)uit -2)
3. Definition (I uive,. s v puron 1o w sunivusi vr e sunin s wy e gy v @< D
f(@)
gl
il
il
sk
1 @) 4 -
gl
t 2L
a b | | | g | oo
0 0.5 1.0 1.5 2.0 2.5 3.0
FIGURE 3.13 Pulse function H(t —a) — H(t — b). et ot e

4. Theorem (Second shifting theorem, or shifting in the t variable): Let £[f](s) = F(s) for
s>b. Then L[H(t—a)f(t—a)](s)=e *F(s) for s>b. =

Le™F(s)]=H(t—a)f(t—a)

—as

Se—3s

Examples: L[H(t-a)] = £‘1[Sz+4] = H(t-3)xos(2(t —3)).

Compute £[g], where g(t)=0 for 0<t<2 and g(t)=t*>+1 for t>2.

2| 2 4 5
= e S—3+S—2+g :

0 ift<3
Sol "+ay=1f(t) , yO=y(©0)=0 , f(t)y=1 . .
olve y"+4y=1() y(0) =y'(0) (t) {t 153 =

y=H(t —3)E +%(t ~3) —%cos(Z(t ~3)) —%sin(Z(t —3))} .

17
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4.4 Convolution

1. Definition (Convolution): If f and g are defined on [0, «), then the convolution f xg of f

with g is the function defined by (f *g)(t) :J'; f(t—7)g(r)dz for t>0.

2. Theorem (Convolution theorem): If f * g is defined, then

L[ +g]=L[F]1£[g]=F(s)G(s).

3. Theorem: Let £'[F]=f and £'[G]=g. Then £'[FG]=f *g.

Example: £* ! - = g _Loa, 1
s(s—4) 4 16 16

Determine fsuch that (1) =2t + [ f (t—r)e “dr = 2t2+§t3.

4. Theorem: If f g isdefined,sois g=f,and fxg=g=f.

Example: Solve y"-2y'-8y= f(t); y(0)=1y'(0)=0 =

1 xe™ _1y xe +1e4t +Ee’2‘.
6 6 3 3

4.5 Unit Impulses and the Dirac’s Delta Function

1. Dirac’s delta function: o(t) = Iir(T)I o.(t), where o,(t) = l[H O -H({t-9)];
£—0+ &

L[st-a)]=e"; L[51)]=1.

18
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0 €

FIGURE 3.31 Graph of

o.(t— a). . .
2. Theo:és U—nflc)ung property). Lew a >u and let f be integrable on [0, «0) and continuous at

a. Then j:f(t)a(t—a)dtzf(a)

~ Let f()=e = j:f(t)a(t—a)dtz J.:e’“&(t—a)dt:e’sa: f(a) = the definition

of the Laplace transformation of the delta function.
Example: Solve y'+2y'+2y =5t —-3); y(0)=y'(0)=0 = y=H({t-3)e “?sin(t-3).

4.6 Laplace Transform Solution of Systems

X'-2X+3y'+2y = 4, we g Loa 10,
Example: Solve the system: 2y'-x'+3y =0, — 2 . 6 3
x(0) =x'(0) = y(0) = 0. y=-l+ e+ e

4.7 Differential Equations with Polynomial Coefficients

1. Theorem: Let L[f](s)=F(s) for s>b and suppose that F is differentiable. Then

L[tF (©](s) =—F'(s) for s>b.

2. Corollary: Let £[f](s)=F(s) for s>b and let n be a positive integer. Suppose F is n

dn
ds"

times differentiable. Then £[t" f (t)](s) = (-1)"
19

F(s) for s>b.
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Example: ty"+(4t—-2)y'-4y=0; y(0)=1 =

y=e " +2te™ +c —i+it+ie‘4t +ite_4t .
32 16 32 16

3. Theorem: Let f be piecewise continuous on [0, k] for every positive number k and suppose

there are numbers M and b such that |f (t) < Me™ for t>0. Let L[f](s)=F(s).

Then limF(s) =0.

Example: y2ty 4y =1 y(0)=y(0)=0 = y=%t2.

20
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5. SERIES SOLUTIONS
5.1 Power Series Solutions of Initial Value Problems

1. Definition (Analytic function): A function f is analytical at x, if f(x) has a power series
representation in some open interval about X, : 1‘(x)=Zan (Xx=X%,)" in some

interval (x, —h, x, +h).

) I ) fm
Example: Taylor series: f(x) =) ——=2* (XO) X,)", aﬂ:#.
= n n!
o = fM0) ., . . .
Maclaurin series: f(x):z X, e, X, =0 in Taylor series.
= N
sinx=" x*™ at x=0.
nz‘(2n+1)I

2. Theorem: Let p and q be analytic at x,. Then the initial value problem y+p(x)y =q(X);

y(X,) =Y, hasasolution that is analytical at x, .

4

Example: y+e*y=x2; y(0)=4 = y(x):4—4x+x3+:—2+---

3. Theorem: Let p, g and f be analytic at x,. Then the initial value problem
y+p(X)y+g(x)y = f(x); y(X,)=A, Y'(X,)=Bhas a unique solution that is

also analytical at x, .
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3
Examples: y"-xy'+e*y=4; y(0)=1, y'(0)=4 = y(x):1+4x+gx2—%+~-.

y"+cos(x)y'+4y =2x-1 =

— Xt ————— X" +-

y(x) =a+bx+ 5 +---, a=y(0), b=y'(0).

5.2 Power Series Solutions Using Recurrence Relations

1. Coefficients developed to be a recurrence relation

1

Example: y"+x’y=0 at x=0 = a,=0, a,=0, a,=———a_,,
p y y 2 3 nn-1) ™

n=4,5-,

1 1 1 1
=a,(1-—x"+—x*+--)+a,(Xx——x>+——x* +--),
Y =2 12 672 )+a 20 1440 )

2. Two-term recurrence relation

Example: y"+x°y+4y=1-x* at x=0 = azzé—zao, agz_gal,
4 —
a4 :-E.'.gao_ial, an - _ an—Z +(n 3)an—3 , n=5' 6,
4 3 ° 12 n(n-1)

5.3 Singular Points and the Method of Frobenius

1. Definition (Ordinary and singular points): x, is an ordinary point of equation

P(X)y"+Q(X)y+R(X)y = F(x) if P(x,)#0 and Q(x)/P(x), R(x)/P(x), and
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F(x)/P(x) are analytic at x, . X, Is a singular point of equation

P(X)y"+Q(X)y+R(x)y = F(x) if X, isnotan ordinary point.
Example: x*(x—2)°y"+5(x+2)(x—2)y+3x’y =0 = x=0, x=2 are singular points.

2. Definition (Regular and irregular singular points): x, is a regular singular point of

P(X)y"+Q(X)y+R(x)y=0 if x, is a singular point, and the functions

Q(X)

(x=x )— and (x—xo)zy are analytic at X,. A singular point that is
X

P(x)

not regular is said to be an irregular singular point.

Example: x*(x—=2)*y"+5(x+2)(x—2)y+3x’y =0 = x=0 is an irregular singular

point, x =2 isa regular singular points.

n+r

3. Frobenius series: y(x) = Zc (X—X,)

n=0

4. Theorem (Method of Frobenius): Suppose x, is a regular singular point of
P(X)y"+Q(x)y'+R(x)y =0. Then there exists at least one Frobenius solution

y(x):ch(x—xo)n+r with ¢, #0. Further, if the Taylor expansions of

Q(x)
%) 509

(X, —h, x, +h), then this Frobenius series also converges in this interval, except

2 R(X)

and (x—Xx,) about X, converge in an open interval
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perhaps at x, itself.

There will be an indicial equation used to determine the values of r.

Example: xzy"+x(2x+£)y'+(x—1)y:0 = r=1: Cn:_ﬂcn_1! n=12--;
2 2 3
n(n+-)
2
rz_l: C:Z—ﬂ(ﬁ:_l, n=12---
n(n—E)
2

5.4 Second Solutions and Logarithm Factors

1. Theorem (A second solution in the method of Frobenius): Suppose 0 is a regular singular
point of P(X)y"+Q(X)y'+R(x)y=0. Let r, and r, be roots of the indicial
equation. If these are real, suppose r, >r,. Then (a) If r,—r, isnotan integer,
there are two linearly independent Frobenius solutions: yl(x)=icnx“”1 and

n=0

y,(x) =D ¢, x"" , with ¢, #0 and ¢, #0. These solutions are valid in some
n=0

interval (O,h) or (-h,0). (b) If r,—r, =0, there is a Frobenius solution

y,(x)=>c,x™ with c,#0 as well as a second solution:
n=0

Y,(X) =y, () Inx+> ¢ x™" . Further, y, and y, form a fundamental set of

n=1

solutions on some interval (0, h). (c) If r,—r, isa positive integer, then there
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is a Frobenius solutions: y,(x) = chx””l . In this case there is a second solution of the form
n=0

yz(x)=kyl(x)lnx+2c:x””2 . If k=0 this is a second Frobenius series
n=0

solution; if not, the solution contains a logarithm term. In either event, y, and

y, form a fundamental set on some interval (O, h).

1 n-2 *
2 X c, =2,

(n!)

Examples: X?y"+5xy+H(X+4)y=0.= r=-2: y,(X)=C, > (-1)"
n=0

— —ic* 2(-1)

R A

X°y'+x’y'2y=0= r=2 or r=-1.
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6. FOURIER SERIES

6.1 The Fourier Series of a Function

n

1. 1‘(x)=%a0 + > a, cos( fX)ern sin(nTﬂX), —-L<x<L, I_LL f(x)dx exists.

n=1

2. Lemma 13.1: If n and m are nonnegative integers, i. Iicos(%)sin(¥)dx =0;

oL nzx mzx L . NaxX, . ,MaxX .

ii.| cos(——)cos(——)dx =| sin(—)sin(——)dx=0,if n=m;
[[, cos(=) cos(=)dx = [ sin(==)sin(==)

L nzx L, Nax .
|||.Lcosz(T)dx :Lsmz(T)dx =L,if n=0.

3. Definition 13.1: Let f be a Riemann integrable function on [-L, L], then Fourier series of f

n

on [-L,L]: %ao +Zan cos( |7_ZX) +b, sin(nT”X); Fourier coefficients of f

n=1

. 1 N7X 1l . N7X
on [-L,L]: &, =+ Lf(x)cos(T)dx, b, =~ J:Lf(x)sm(T)dx for

n= O, 1' 2, .
4. Definition 13.2: Even and odd functions:

fisaneven functionon [-L, L] if f(—x)=f(x) for —L<x<L; fisan odd function
on [-L,L] if f(-x)=—f(x) for —L<x<L; even-even =even; odd-odd =even;

even -odd = odd .
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[- f(dx=0 iffisoddon [-L, L]; jfo(x)dx=2LLf(x)dx if f is even on [L, L].

6.2 Convergence of Fourier Series

1. Definition 13.3: Piecewise continuous function
f is piecewise continuous on [a, b] if

1. fis continuous on [a, b] except perhaps at finitely many points.

2. Both lim f(x) and Iirp_f(x) exist and are finite.

X—a+

3.If x, isin(a, b)and fis not continuous at x,, then lim f(x) and lim f(x) exist

X—>Xg+

and are finite.
2. Definition 13.4: Piecewise smooth function

f is piecewise smooth on [a, b] if fand f' are piecewise continuous on [a, b].

3. Theorem 13.1: Convergence of Fourier series

Let f is piecewise smooth on [-L, L]. Thenfor —L < x < L, the Fourier series of f on

[-L, L] converge to%(f(x+)+ f(x-)).

4. Convergence at the endpoints

5. Definition 13.5: Right derivative f;'(c) = hIim

—0+

f(c+h)—f(ct)
h
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6. Definition 13.6: Left derivative f,"(c) = lim fle+ h)h_ f(c)

—0—

7. Theorem 13.2: Let f is piecewise smooth on [-L, L]. Then,
I. If —L<x<L andf has a left and right derivative at x, then the Fourier series of f on
1
[-L, L] converge at xtoz(f (x+)+ T (x-)).
i If f'(-L) and f_'(L) exist, then at both L and — L, the Fourier series of f on

[-L, L] converge to%(f(—L+)+ f(L-)).
8. Partial sums of Fourier series
6.3 Fourier Cosine and Sine Series

1. The Fourier cosine series of a function

f(x), forO<x<L )
(x), for X f isan

Let f be integrable on the half-interval [0, L]: f,(x) = , T,
J [0 L] 109 {f(—x), for—-L<x<0

even function and called even extension of fon [-L, L].

Fourier cosine series of f on [0, L]: %ao + Zan cos(nTﬂX) ; Fourier cosine coefficients of f
n=1

_ 24 nzx 2 NzX
on[o, L] a, == jo fe(x)cos(T)olx_E jo f(x)cos(T)dx.

2. Theorem 13.3: Convergence of Fourier cosine series
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Let f is piecewise continuous on [0, L]. Then,
I. If 0<x<L andfhas a left and right derivative at x, then the Fourier cosine series of f
1
on [0, L] converges at xtoz(f (x+)+ T (x-)).
ii. If f has a right derivative at 0, then the Fourier cosine series of fon [0, L] converges at
Oto f(0+).
iii. If f has a left derivative at L, then the Fourier cosine series of fon [0, L] converges at

Lto f(L-).

3. The Fourier sine series of a function

f(x), forO<x<L

, f,is
—f(-x), for—L<x<0

Let f be integrable on the half-interval [0, L]: f,(X) :{

an odd function and called odd extension of fon [-L, L].

Fourier sine series of fon [0, L]: an sin(nTﬂX) ; Fourier sine coefficients of f on [0, L]:
n=1

2t . N7aX 2 (L . Nax
b, =+ jo fo (Qsin(==)dx = = jo f (x)sin(==)dx.
4. Theorem 13.4: Convergence of Fourier sine series

Let f is piecewise continuous on [0, L]. Then,
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If 0<x<L andfhasa left and right derivative at x, then the Fourier sine series
of fon
1
[0, L] converges at xtoz(f (x+)+ T (x-)).

ii. At 0 and L, the Fourier sine series of fon [0, L] converges to 0.
6.4 Integration and Differentiation of Fourier Series
1. Theorem 13.5: Integration of Fourier series

Let f be piecewise continuous on [—L, L], with Fourier series

%ao +>a, cos(nTﬂX) +b, sin(nT”X) . Then, forany xon [-L, L],

n=1

J._XL f(t)dt = %ao (x+L)+ % i%{am sin(%) -b, (cos(%) -(-1" ﬂ :

n=1

2. Theorem 13.6: Differentiation of Fourier series

Let f be continuous on [-L, L] and suppose f(L)= f(-L). Let f' be piecewise

n

continuous on [-L,L]. Then, f(x)= %ao + Zan cos( |7_ZX) +b, sin(nTﬂX) , and at each

n=1

pointin (L, L) where f"(x) exists, f'(x)=zn”

. Nnax n7zx
— | —a,.sin(—)+b_cos(—) |.
HL{ n (L) A (L)}

3. Theorem 13.7: Bessel’s inequalities: i. The coefficients in the Fourier sine expansion of f on

[0, L] satisfy > b} < %IOL f 2(x)dx ; ii. The coefficients in the Fourier cosine expansion
=1
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of fon [0, L] satisfy %aj +>ar< %IOL f 2(x)dx ; iii. If f is integrable on [-L, L], then the
n=1

Fourier coefficients of fon [—L, L] satisfy %a§+2(a§+bf)s% [ 7200
n=1 -

4. Theorem 13.8: Uniform and absolute convergence of Fourier series: Let f be continuous on
[-L, L] and let f' be piecewise continuous. Suppose f(—L)= f(L). Then, the Fourier

series of fon [-L, L] converges absolutely and uniformlyto f(x) on [-L, L].

5. Theorem 13.9: Parseval’s theorem: Let f be continuous on [-L, L] and let f' be piecewise
continuous. Suppose f(—L) = f(L). Then, the Fourier coefficients of fon [-L, L]

. I S I N L
satisfy —a; + nzzll(an +07) =7 L f2(x)dx
6.5 The Phase Angle Form of a Fourier Series
1. Periodic, fundamental period

2. Definition 13.7: Phase angle form: Let f have fundamental period p. Then the phase angle

form of the Fourier series of f is %ao +ch cos(nw,X+06,), inwhich o, = 2z ,
n=1 p

c, =vya’+b?, and 5n:tan‘l(—2—”j for n=1,2,---.

n

Harmonic form, nth harmonic, harmonic amplitude, phase angle.
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6.6 Complex Fourier Series and the Frequency Spectrum

1. Conjugate, magnitude, argument, polar form.

2. Definition 13.8: Complex Fourier series: Let f have fundamental period p. Let @, = 2—”.
p
H H H < inwyx 1 pl2 —inawgt
Then the complex Fourier series of f is Zdne ", where d, =—I ' f()e ™" dt for
- p-r

n=0,+1£2, ---. The numbers d, arethe complex Fourier coefficients of f.

3. Theorem 13.10: Let f be periodic with fundamental period p. Let f be piecewise smooth on

[-p/2, p/2]. Then at each x the complex Fourier series converges to %(f (x+)+ T (x-)).
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