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1. FIRST-ORDER DIFFERENTIAL EQUATIONS 

1.1 Preliminary Concepts 

1. General and particular solutions: For 0)',,( yyxF , any equation involving a first 

derivative; )(xy   such that 0F . 

Example: xcexyyy  2)(2  

xcxyyyx /)(   

cxxyxy  sin)(0cos  

2. Implicitly defined solutions 

Example: cexyx
eyx

xy
y y

y





 432

422

3

22
83

22
 

3. Integral curves: a graph of a solution 

4. The initial value problem: 0)',,( yyxF , initial condition: 00 )( yxy   

Example: xexyyyy 37.5)(7.5)0(,3   

5. Direction fields: ),('0)',,( yxFyyyxF   
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1.2 Separable Equations 

1. Separable differential equation: )()(' yBxAy   

Example: 
ce

yeyy
x

x






 12  

RC circuits: Charging: )1( / RCteCEQ
C

Q
IRE   

Discharging: RCteQQ
C

Q
IR /

0

  

1.3 Linear Differential Equations: )()()()(' xqxyxpxy  , integrating factor:  dxxp

e
)(

 

Example: xCexxyxyy  )]cos()[sin(
2

1
)sin( .  

x

y
xy  23 , 5)1( y . 

1.4 Exact Differential Equations 

1. Potential function: For 0'),(),(  yyxNyxM , we can find a ),( yx  such that M
x





 

and N
y





;   is the potential function; 0'),(),(  yyxNyxM  is 

exact. 

2. Exact differential equation: a potential function exists; general solution: cyx ),( . 

Example: 
yeyx

xy
y

422

3

83

22




 . 
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3. Theorem: Test for exactness: 
x

N

y

M









 

Example: , 0)24(32  yxxyxyx .  0)1cos(2sin  yyexye xx . 

1.5 Integrating Factors 

1. Integrating factor: 0),( yx  such that 0'),(),(  yyxNyxM   is exact. 

Example: 0)63(6 22  yxxyxyy . 

2. How to find integrating factor: 
x

N

y

M








 )()( 
 

Example: 0 yxyx . 

3. Separable equations and integrating factors: 
B

1
  

4. Linear equations and integrating factors: 
dxxp

e
)(

  

1.6 Homogeneous and Bernoulli Equations 

1. Homogeneous differential equation: )('
x

y
fy  ; let  uxy  separable. 

Example: y
x

y
yx 

2

. 

2. Bernoulli equation: yxRyxPy )()('  ;  0  linear; 1  separable; otherwise,  
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let  1yv linear 

Example: 323 yx
x

y
y   

2. HIGHER ORDER LINEAR EVENS 

2.1 Preliminary Concepts 

1. 0),,,(  yyyxF , an equation that contains a second derivative, but no higher derivative. 

2. Linear second-order differential equations: )()(')(")( xSyxQyxPyxR  . 

2.2 Theory of Solutions 

1. The initial value problem: )()(')(" xfyxqyxpy  ; Axy )( 0 , Bxy )(' 0 . 

Example: 321)0(,3)0(,012 3  xxyyyxy . 

2. The homogeneous linear ODEs of 2nd order: 0)(')("  yxqyxpy . 

3. Theorem: Let 1y  and 2y  be solutions of 0)(')("  yxqyxpy  on an interval I.  Then 

any linear combination of these solutions, i.e., 2211 ycycy  , is also a solution. 

4. Linear dependence: Two functions f and g are linearly dependent on an open interval I if, for 

some constant c, either )()( xcgxf   for all x in I, or )()( xcfxg   for all x in I.  Linear 

independence: If f and g are not linearly dependent on I. 

Example: xyxyyy sin,cos0 21  . 
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5. Wronskian Test: Let 1y  and 2y  be solutions of 0)(')("  yxqyxpy  on an open interval 

I.  Then, (1) Either 0)( xW  for all x in I, or 0)( xW  for all x in I.  (2) 1y  and 2y  

are linearly independent on I if and only if 0)( xW  on I, where 
21

21
)(

yy

yy
xW


 . 

Example: 









1074

2

963

1

45360

1

504

1

12

1

,
12960

1

180

1

6

1
10

xxxxy

xxxyxyy

. 

6. Theorem: Let 1y  and 2y  be linearly independent solutions of 0)(')("  yxqyxpy  on 

an open interval I.  Then, every solution of this differential equation on I is a linear 

combination of 1y  and 2y . 

7. Definition: Let 1y  and 2y  be solutions of 0)(')("  yxqyxpy  on an open interval I.  

(1) 1y  and 2y  form a fundamental set (or a basis) of solutions on I if 1y  and 2y  are 

linearly independent on I.  (2) When 1y  and 2y  form a fundamental set of solutions, we 

call 2211 ycyc   , with 1c  and 2c  arbitrary constants, the general solution of the 

differential equation on I.  

8. The nonhomogeneous equations: )()(')(" xfyxqyxpy  . 

9. Theorem: Let 1y  and 2y  be a fundamental set of solutions of 0)(')("  yxqyxpy  on an 

open interval I.  Let py  be any solution of )()(')(" xfyxqyxpy   on I.  Then, for 

any solution   of )()(')(" xfyxqyxpy  , there exist numbers 1c  and 2c  such that 

pyycyc  2211 . 
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2.3 Reduction of Order: Given 0)(')("  yxqyxpy , if we know a first solution 1y , then a 

second solution can be the form 12 )( yxuy  . 

Example: xx xeyeyyyy 2

2

2

1,044   . 

2.4 The Constant Coefficient Homogeneous Linear Equation: 0'"  ByAyy , A and B are 

numbers.  

1. Characteristic equation: 02  BA  obtained by substituting xey   into 

0'"  ByAyy . 

2. Case 1. 042  BA : The general solution is bxax ececxy 21)(  ; 
2

42 BAA
a


 , 

2

42 BAA
b


 . 

Example: xx ececyyyy 3

2

2

106   . 

3. Case 2. 042  BA : The general solution is axax xececxy 21)(  ; 
2

A
a  . 

Example: xx xececyyyy 3

2

3

1096  . 

4. Case 3. 042  BA : The general solution is xiqpxiqp ececxy )(

2

)(

1)(   ; 
2

A
p  , 

2

4 2AB
q


 . 

Example: xixi ececyyyy )51(

2

)51(

1062   . 
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5. An alternative general solution in the complex root case: ))sin()cos(()( 21 qxcqxcexy px  . 

Maclaurin expansions: n

n

x x
n

e 





0 !

1
, n

n

n

x
n

x 2

0 )!2(

)1(
cos 






 , 12

0 )!12(

)1(
sin 









 n

n

n

x
n

x . 

Euler’ formula: xixeix sincos  . 

Example: ))5sin()5cos((062 21 xcxceyyyy x   . 

2.5 Euler’s (Euler-Cauchy) Equation: 0'"2  ByAxyyx , let (i) xy     Characteristic 

equation: 0)1(2  BA  , or (ii) let tex  , xt ln , )()( teytY     

0')1("  BYYAY . 

1. Case 1. 04)1( 2  BA : The general solution is ba xcxcxy 21)(  ; 

2

4)1()1( 2 BAA
a


 , 

2

4)1()1( 2 BAA
b


 . 

Example: 2

2

3

1

2 062 xcxcyyyxyx   . 

2. Case 2. 04)1( 2  BA : The general solution is xxcxcxy aa ln)( 21  ; 
2

1 A
a


 . 

Example: xxcxcyyyxyx ln095 3

2

3

1

2  . 

3. Case 3. 04)1( 2  BA : The general solution is ))lnsin()lncos(()( 21 xqcxqcxxy p  ; 

2

1 A
p


 , 

2

)1(4 2


AB
q . 

Example: ))ln4sin()ln4cos((004.166.0 21

2.02 xcxcxyyyxyx  . 
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2.6 The Nonhomogeneous Equation: )()(')(" xfyxqyxpy  , general solution ph yyy  . 

1. The method of variation of parameters: let 21 vyuyy p  , then simultaneously solve 









fyvyu

yvyu

21

21 0
. 

Example: 
xxxxxxxcxcy

xxyy

2sin)tansecln
2

1
(sin2coscos2sin2cos

4/4/,sec4

21 

 

. 

2. The method of undetermined coefficients: only applied while p(x) and q(x) are constant, i.e., 

)('" xfByAyy  . 

 

Example: 1
2

1
2284 22

2

2

1

2   xxececyxxyy xx . 

-- Modification Rule: If a term in your choice for py  happens to be a solution of the 

homogeneous ODE, multiply your choice of py  by x (or by 2x  if this solution 

corresponds to a double root of the characteristic equation of the homogeneous ODE). 
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Example: xxxx xeececyeyyy 2832 2

3

1   . 

xxxx exxececyeyyy 323

2

3

1

3

2

5
596   

3. The principle of superposition: )()()()(')(" 21 xfxfxfyxqyxpy n  , pjy  is a 

solution of )()(')(" xfyxqyxpy j , then pnpp yyy  21  is a solution. 

Example: )(
4

1
2sin2cos24 2

21

2 xx exxcxcyexyy   . 
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3. HIGHER ORDER LINEAR ODES 

3.1 Homogeneous Linear ODEs 

1. 0),,,,( )(  nyyyxF  , a nth order ODE if the nth derivative 
n

n
n

dy

yd
y )(  of the unknown 

function )(xy  is the highest occurring derivative. 

2. Linear ODE: )()()()( 01

)1(

1

)( xgyxpyxpyxpy n

n

n  

  . 

3. Homogeneous linear ODE: 0)()()( 01

)1(

1

)(  

 yxpyxpyxpy n

n

n  . 

4. Theorem: Fundamental Theorem for the Homogeneous Linear ODE: For a homogeneous 

linear ODE, sums and constant multiples of solutions on some open interval I are again 

solutions on I. (This does not hold for a nonhomogeneous or nonlinear ODE!). 

5. General solution: nn ycycy  11 , where nyy ,,1  is a basis (or fundamental system) 

of solutions on I; that is, these solutions are linearly independent on I. 

6. Linear independence and dependence: n functions nyy ,,1   are called linearly independent 

on some interval I where they are defined if the equation 011  nn ykyk   on I implies 

that all nkk ,,1   are zero. These functions are called linearly dependent on I if this  
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equation also holds on I for some nkk ,,1   not all zero. 

Example: 045
2

2

4

4

 y
dx

yd

dx

yd
.  Sol.: xxxx ececececy 2

432

2

1   . 

7. Theorem: Let the homogeneous linear ODE have continuous coefficients ),(0 xp , )(1 xpn  

on an open interval I. Then n solutions nyy ,,1   on I are linearly dependent on I if and 

only if their Wronskian is zero for some 0xx   in I. Furthermore, if W is zero for 0xx  , 

then W is identically zero on I. Hence if there is an 1x  in I at which W is not zero, then 

nyy ,,1   are linearly independent on I, so that they form a basis of solutions of 

the homogeneous linear ODE on I. 

Wronskian: 

)1()1(

2

)1(

1

21

21

1 ),,(






n

n

nn

n

n

n

yyy

yyy

yyy

yyW









  

8. Initial value problem: An ODE with n initial conditions 00 )( Kxy  , ,)( 10 Kxy  , 

10

)1( )( 

  n

n Kxy . 

3.2 Homogeneous Linear ODEs with Constant Coefficients 

1. 001

)1(

1

)(  

 yayayay n

n

n  : Substituting xey  , we obtain the characteristic 

equation 001

1

1  

 aaa n

n

n   . 
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(i) Distinct real roots: The general solution is 
x

n

x nececy


 1

1  

Example: 022  yyyy .  Sol.: xxx ecececy 2

321   . 

(ii) Simple complex roots: qip  , )cos(1 qxey px , )sin(2 qxey px . 

Example: 0100100  yyyy .  Sol.: xcxcecy x 10sin10cos 321  . 

(iii) Multiple real roots: If   is a real root of order m, then m corresponding linearly 

independent solutions are: xe , xxe , ,2 xex  , xm ex 1 . 

Example: 033 )4()5(  yyyy .  Sol.: xexcxccxccy )( 2

54321  . 

(iv) Multiple complex roots: If qip   are complex double roots, the corresponding 

linearly independent solutions are: )cos(qxe px , )sin(qxe px , )cos(qxxe px , 

)sin(qxxe px . 

2. Convert the higher-order differential equation to a system of first-order equations. 

Example: 01524
4

4

6

6

 y
dx

dy

dx

yd

dx

yd
. 

3.3 Nonhomogeneous Linear ODEs 

1. )()()()( 01

)1(

1

)( xgyxpyxpyxpy n

n

n  

  , the general solution is of the form:  
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ph yyy  , where hy  is the homogeneous solution and py  is a particular solution. 

2. Method of undermined coefficients 

Example: xeyyyy  3033 .  Sol.: xx exexcxccy   32

321 5)( . 

3. Method of variation of parameters: nnp yuyuy  11 , where 
W

W
u k

k  , nk ,,1  . 

Example: xxyyxyxyx ln663 423  .  Sol.: )
6

11
(ln

6

1 42

321  xxxcxccy . 
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4. LAPLACE TRANSFORM 

4.1 Definition and Basic Properties: initial value problem   algebra problem   solution of the 

algebra problem   solution of the initial value problem 

1. Definition (Laplace Transform): The Laplace transform )()()]([
0

sFdttfesf st  


L , for 

all s such that this integral converges. 

Examples: atetf )(    
as

sf



1

)]([L , as  .  ttg sin)(     
1

1
)]([

2 


s
sfL . 

2. Table of Laplace transform of functions 

 

3. Theorem (Linearity of the Laplace transform): Suppose )]([ sfL  and )]([ sgL  are defined  
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for as  , and   and   are real numbers.  Then )()()]([ sGsFsgf  L  for 

as  . 

4. Definition (Inverse Laplace transform): Given a function G, a function g such that Gg ][L  

is called an inverse Laplace transform of G.  In this event, we write 

][1 Gg  L . 

5. Theorem (Lerch): Let f and g be continuous on ),0[   and suppose that ][][ gf LL  .  

Then gf  . 

6. Theorem: If fF  ][1L  and gG  ][1L  and   and   are real numbers, then 

gfsGF   )]([1L . 

4.2 Solution of Initial Value Problems Using the Laplace Transform 

1. Theorem (Laplace transform of a derivative): Let f be continuous on ),0[   and suppose 'f  

is piecewise continuous on ],0[ k  for every positive k.  Suppose also that 

0)(lim 


kfe sk

k
 if 0s .  Then )0()()]('[ fssFsf L . 

2. Theorem (Laplace transform of a higher derivative): Suppose 1,,', nfff   are continuous 

on ),0[   and )(nf  is piecewise continuous on ],0[ k  for every positive k.  

Suppose also that 0)(lim )( 


kfe jsk

k
 for 0s and for 1,,2,1  nj  .  Then 

)0()0()0(')0()()]([ )1()2(21)(   nnnnnn fsffsfssFssf L . 
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Examples: 1)0(;14'  yyy    
4

1

4

5 4  tey . 

2)0(',0)0(;3'4"  yyeyyy t    ttt eeey 3

8

7

4

3

8

1   . 

4.3 Shifting Theorems and the Heaviside Function 

1. Theorem (First shifting theorem, or shifting in the s variable): Let )()]([ sFsf L  for 

0 bs .  Let a be any number.  Then )()]([ asFsfeat L  for bas  . 

)()]([)]([ 11 tfesFeasF atat   LL . 

Examples: )]cos([ bteatL    
22)( bas

as




.  Find 













204

4
2

1

ss
L    te t 4sin2 . 

2. Definition (Heaviside function): The Heaviside function (or unit step function) H is defined 

by 









0if1

0if0
)(

t

t
tH .   










at

at
atH

if1

if0
)(  

     

-- On-off effect: 









attg

at
tgatH

if)(

if0
)()( , 










atatg

at
atgatH

if)(

if0
)()(  
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3. Definition (Pulse): A pulse is a function of the form )()( btHatH  , in which ba  . 

    

4. Theorem (Second shifting theorem, or shifting in the t variable): Let )()]([ sFsf L  for 

bs  .  Then )())](()([ sFesatfatH asL  for bs  .   

)()()]([1 atfatHsFe as L  

Examples: )]([ atH L    
s

e as

.  ]
4

[
2

3
1





s

se s
-L    ))3(2()3(  txostH . 

Compute ][gL , where 0)( tg  for 20  t  and 1)( 2  ttg  for 2t . 

  









sss
e s 542

23

2 . 

Solve )(4 tfyy  , 0)0()0(  yy , 









3if

3if0
)(

tt

t
tf .   









 ))3(2sin(

8

1
))3(2cos(

4

3
)3(

4

1

4

3
)3( ttttHy . 
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4.4 Convolution 

1. Definition (Convolution): If f and g are defined on ),0[  , then the convolution gf   of f 

with g is the function defined by  dgtftgf
t

 
0

)()())((  for 0t . 

2. Theorem (Convolution theorem): If gf   is defined, then 

)()(][][][ sGsFgfgf  LLL . 

3. Theorem: Let fF  ][1L  and gG  ][1L .  Then gfFG  ][1L . 

Example: 












2

1

)4(

1

ss
L    

16

1

16

1

4

1 44  tt ete . 

Determine f such that 


t

detfttf
0

2 )(2)(      32

3

2
2 tt  . 

4. Theorem: If gf   is defined, so is fg  , and fggf  . 

Example: Solve 0)0(',1)0();(8'2"  yytfyyy    

tttt eeefef 2424

3

2

3

1

6

1

6

1   . 

4.5 Unit Impulses and the Dirac’s Delta Function 

1. Dirac’s delta function: )(lim)(
0

tt 





 , where )]()([
1

)( 


  tHtHt ; 

aseat  )]([L ; 1)]([ tL . 
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2. Theorem (Filtering property): Let 0a  and let f be integrable on ),0[   and continuous at 

a.  Then )()()(
0

afdtattf 


  

-- Let stetf )(    )()()()(
00

afedtatedtattf sast  





     the definition 

of the Laplace transformation of the delta function. 

Example: Solve 0)0(')0();3(2'2"  yytyyy     )3sin()3( )3(   tetHy t . 

4.6 Laplace Transform Solution of Systems 

Example: Solve the system: 

.0)0()0(')0(

,03''2

,42'3'2"







yxx

yxy

yyxx

   
tt

tt

eey

eetx

3

2

3

1
1

3

10

6

1
3

2

7

2

2









 

4.7 Differential Equations with Polynomial Coefficients 

1. Theorem: Let )()]([ sFsf L  for bs   and suppose that F is differentiable.  Then 

)('))](([ sFsttf L  for bs  . 

2. Corollary: Let )()]([ sFsf L  for bs   and let n be a positive integer.  Suppose F is n 

times differentiable.  Then )()1())](([ sF
ds

d
stft

n

n
nn L  for bs  . 
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Example: 1)0(;04')24("  yyytty    









  tttt teetcteey 4444

16

1

32

1

16

1

32

1
2 . 

3. Theorem: Let f be piecewise continuous on ],0[ k  for every positive number k and suppose 

there are numbers M and b such that btMetf )(  for 0t . Let )()]([ sFsf L .  

Then 0)(lim 


sF
s

. 

Example: 0)0(')0(;14'2"  yyytyy    2

2

1
ty  . 
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5. SERIES SOLUTIONS 

5.1 Power Series Solutions of Initial Value Problems 

1. Definition (Analytic function): A function f is analytical at 0x  if )(xf  has a power series 

representation in some open interval about 0x : 





0

0 )()(
n

n

n xxaxf  in some 

interval ),( 00 hxhx  . 

Example: Taylor series: n

n

n

xx
n

xf
xf )(

!

)(
)( 0

0

0

)(






, 
!

)( 0

)(

n

xf
a

n

n  . 

Maclaurin series: 





0

)(

,
!

)0(
)(

n

n
n

x
n

f
xf i.e., 00 x  in Taylor series. 













0

12

)!12(

)1(
sin

n

n
n

x
n

x  at 0x . 

2. Theorem: Let p and q be analytic at 0x .  Then the initial value problem )()(' xqyxpy  ; 

00 )( yxy   has a solution that is analytical at 0x . 

Example: 2' xyey x  ; 4)0( y    
12

44)(
4

3 x
xxxy  

3. Theorem: Let p, q and f be analytic at 0x .  Then the initial value problem 

)()(')(" xfyxqyxpy  ; Axy )( 0 , Bxy )(' 0 has a unique solution that is 

also analytical at 0x . 



Al Karkh University of Science                                          Dr. Akeel M. Kadim                                                                                                                                                        

College of Science                                                  Differential Equations 

Medical Physics Dept.                                                      2nd Class                   

 22 

 

Examples: 4'"  yexyy x ; 1)0( y , 4)0(' y    
62

3
41)(

3
2 x

xxxy . 

124')cos("  xyyxy    







 32

6

334

2

41
)( x

ba
x

ba
bxaxy , )0(ya  , )0(yb  . 

5.2 Power Series Solutions Using Recurrence Relations 

1. Coefficients developed to be a recurrence relation 

Example: 0" 2  yxy  at 0x    02 a , 03 a , 4
)1(

1



 nn a

nn
a , ,5,4n , 

)
1440

1

20

1
()

672

1

12

1
1( 95

1

84

0   xxxaxxay . 

2. Two-term recurrence relation 

Example: 22 14'" xyyxy   at 0x    02 2
2

1
aa  , 13

3

2
aa  , 

104
12

1

3

2

4

1
aaa  , 

)1(

)3(4 32




 

nn

ana
a nn

n , ,6,5n . 

5.3 Singular Points and the Method of Frobenius 

1. Definition (Ordinary and singular points): 0x  is an ordinary point of equation 

)()(')(")( xFyxRyxQyxP   if 0)( 0 xP  and )(/)( xPxQ , )(/)( xPxR , and  
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)(/)( xPxF  are analytic at 0x .  0x  is a singular point of equation 

)()(')(")( xFyxRyxQyxP   if 0x  is not an ordinary point. 

Example: 03')2)(2(5")2( 223  yxyxxyxx    0x , 2x  are singular points. 

2. Definition (Regular and irregular singular points): 0x  is a regular singular point of 

0)(')(")(  yxRyxQyxP  if 0x  is a singular point, and the functions 

)(

)(
)( 0

xP

xQ
xx   and 

)(

)(
)( 2

0
xP

xR
xx   are analytic at 0x .  A singular point that is 

not regular is said to be an irregular singular point. 

Example: 03')2)(2(5")2( 223  yxyxxyxx    0x  is an irregular singular 

point, 2x  is a regular singular points. 

3. Frobenius series: 





0

0 )()(
n

rn

n xxcxy . 

4. Theorem (Method of Frobenius): Suppose 0x is a regular singular point of 

0)(')(")(  yxRyxQyxP .  Then there exists at least one Frobenius solution 







0

0 )()(
n

rn

n xxcxy  with 00 c .  Further, if the Taylor expansions of 

)(

)(
)( 0

xP

xQ
xx   and 

)(

)(
)( 2

0
xP

xR
xx   about 0x  converge in an open interval 

),( 00 hxhx  , then this Frobenius series also converges in this interval, except  



Al Karkh University of Science                                          Dr. Akeel M. Kadim                                                                                                                                                        

College of Science                                                  Differential Equations 

Medical Physics Dept.                                                      2nd Class                   

 24 

 

perhaps at 0x  itself. 

There will be an indicial equation used to determine the values of r. 

Example: 0)
2

1
(')

2

1
2("2  yxyxxyx    1r : 1

)
2

3
(

12





 nn c

nn

n
c , ,2,1n ; 

2

1
r : 








 1

)
2

3
(

22
nn c

nn

n
c , ,2,1n  

5.4 Second Solutions and Logarithm Factors 

1. Theorem (A second solution in the method of Frobenius): Suppose 0 is a regular singular 

point of 0)(')(")(  yxRyxQyxP .  Let 1r  and 2r  be roots of the indicial 

equation.  If these are real, suppose 21 rr  .  Then (a) If 21 rr   is not an integer, 

there are two linearly independent Frobenius solutions: 







0

1
1)(

n

rn

n xcxy  and 









0

*

2
2)(

n

rn

n xcxy , with 00 c  and 0*

0 c .  These solutions are valid in some 

interval ),0( h  or )0,( h .  (b) If 021  rr , there is a Frobenius solution 









0

1
1)(

n

rn

n xcxy  with 00 c  as well as a second solution:  









1

*

12
1ln)()(

n

rn

n xcxxyxy .  Further, 1y  and 2y  form a fundamental set of 

solutions on some interval ),0( h .  (c) If 21 rr   is a positive integer, then there  
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is a Frobenius solutions: 







0

1
1)(

n

rn

n xcxy .  In this case there is a second solution of the form 









0

*

12
2ln)()(

n

rn

n xcxxkyxy .  If 0k  this is a second Frobenius series 

solution; if not, the solution contains a logarithm term.  In either event, 1y  and 

2y  form a fundamental set on some interval ),0( h . 

Examples: 0)4('5"2  yxxyyx .   2r : 





0

2

201
)!(

1
)1()(

n

nn x
n

cxy , 21 c , 

212 )!(

)1(21

nn
c

n
c

n

nn


 



 , ,3,2n . 

02'" 22  yyxyx   2r  or 1r . 
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6. FOURIER SERIES 

6.1 The Fourier Series of a Function 

1. 





1

0 )sin()cos(
2

1
)(

n

nn
L

xn
b

L

xn
aaxf


, LxL  , 

L

L
dxxf )(  exists. 

2. Lemma 13.1: If n and m are nonnegative integers, i. 0)sin()cos(  dx
L

xm

L

xnL

L


; 

ii. 0)sin()sin()cos()cos(   
dx

L

xm

L

xn
dx

L

xm

L

xn L

L

L

L


, if mn  ; 

iii. Ldx
L

xn
dx

L

xn L

L

L

L
  

)(sin)(cos 22 
, if 0n . 

3. Definition 13.1: Let f be a Riemann integrable function on ],[ LL , then Fourier series of f 

on ],[ LL : 





1

0 )sin()cos(
2

1

n

nn
L

xn
b

L

xn
aa


; Fourier coefficients of f 

on ],[ LL : dx
L

xn
xf

L
a

L

L
n  )cos()(

1 
, dx

L

xn
xf

L
b

L

L
n  )sin()(

1 
 for 

,2,1,0n . 

4. Definition 13.2: Even and odd functions:  

f is an even function on ],[ LL  if )()( xfxf   for LxL  ; f is an odd function 

on ],[ LL  if )()( xfxf   for LxL  ; eveneveneven  ; evenoddodd  ; 

oddoddeven  . 
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0)( 
L

L
dxxf  if f is odd on ],[ LL ;  



LL

L
dxxfdxxf

0
)(2)(  if f is even on ],[ LL . 

6.2 Convergence of Fourier Series 

1. Definition 13.3: Piecewise continuous function 

f is piecewise continuous on [a, b] if  

1. f is continuous on [a, b] except perhaps at finitely many points.  

2. Both )(lim xf
ax 

 and )(lim xf
bx 

 exist and are finite.   

3. If 0x  is in (a, b) and f is not continuous at 0x , then )(lim
0

xf
xx 

 and )(lim
0

xf
xx 

 exist 

and are finite. 

2. Definition 13.4: Piecewise smooth function 

f is piecewise smooth on [a, b] if f and 'f  are piecewise continuous on [a, b]. 

3. Theorem 13.1: Convergence of Fourier series 

Let f is piecewise smooth on ],[ LL .  Then for LxL  , the Fourier series of f on 

],[ LL  converge to ))()((
2

1
 xfxf . 

4. Convergence at the endpoints 

5. Definition 13.5: Right derivative 
h

cfhcf
cf

h
R

)()(
lim)('

0





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6. Definition 13.6: Left derivative 
h

cfhcf
cf

h
L

)()(
lim)('

0





 

7. Theorem 13.2: Let f is piecewise smooth on ],[ LL . Then,  

i. If LxL   and f has a left and right derivative at x, then the Fourier series of f on 

],[ LL  converge at x to ))()((
2

1
 xfxf . 

ii. If )(' LfR   and )(' Lf L  exist, then at both L and L , the Fourier series of f on 

],[ LL  converge to ))()((
2

1
 LfLf . 

8. Partial sums of Fourier series 

6.3 Fourier Cosine and Sine Series 

1. The Fourier cosine series of a function 

Let f be integrable on the half-interval [0, L]: 









0for),(

0for),(
)(

xLxf

Lxxf
xfe , ef  is an 

even function and called even extension of f on ],[ LL . 

Fourier cosine series of f on [0, L]: 





1

0 )cos(
2

1

n

n
L

xn
aa


; Fourier cosine coefficients of f 

on [0, L]: dx
L

xn
xf

L
dx

L

xn
xf

L
a

LL

en  
00

)cos()(
2

)cos()(
2 

. 

2. Theorem 13.3: Convergence of Fourier cosine series 
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Let f is piecewise continuous on ],0[ L . Then,  

i. If Lx 0  and f has a left and right derivative at x, then the Fourier cosine series of f 

on ],0[ L  converges at x to ))()((
2

1
 xfxf . 

ii. If f has a right derivative at 0, then the Fourier cosine series of f on ],0[ L  converges at 

0 to )0( f . 

iii. If f has a left derivative at L, then the Fourier cosine series of f on ],0[ L  converges at 

L to )( Lf . 

3. The Fourier sine series of a function 

Let f be integrable on the half-interval [0, L]: 









0for),(

0for),(
)(

xLxf

Lxxf
xfo , of  is 

an odd function and called odd extension of f on ],[ LL . 

Fourier sine series of f on [0, L]: 


1

)sin(
n

n
L

xn
b


; Fourier sine coefficients of f on [0, L]: 

dx
L

xn
xf

L
dx

L

xn
xf

L
b

LL

on  
00

)sin()(
2

)sin()(
2 

. 

4. Theorem 13.4: Convergence of Fourier sine series 

Let f is piecewise continuous on ],0[ L . Then,  
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If Lx 0  and f has a left and right derivative at x, then the Fourier sine series 

of f on  

],0[ L  converges at x to ))()((
2

1
 xfxf . 

ii. At 0 and L, the Fourier sine series of f on ],0[ L  converges to 0. 

6.4 Integration and Differentiation of Fourier Series 

1. Theorem 13.5: Integration of Fourier series 

Let f be piecewise continuous on ],[ LL , with Fourier series 







1

0 )sin()cos(
2

1

n

nn
L

xn
b

L

xn
aa


.  Then, for any x on ],[ LL , 





 


















1

0 )1()cos()sin(
1

)(
2

1
)(

n

n

nn

x

L L

xn
b

L

xn
a

n

L
Lxadttf




. 

2. Theorem 13.6: Differentiation of Fourier series 

Let f be continuous on ],[ LL  and suppose )()( LfLf  .  Let 'f  be piecewise 

continuous on ],[ LL .  Then, 





1

0 )sin()cos(
2

1
)(

n

nn
L

xn
b

L

xn
aaxf


, and at each 

point in ),( LL  where )(" xf  exists,  













1

)cos()sin()('
n

nn
L

xn
b

L

xn
a

L

n
xf


. 

3. Theorem 13.7: Bessel’s inequalities: i. The coefficients in the Fourier sine expansion of f on 

],0[ L  satisfy  





1

0

22 )(
2

n

L

n dxxf
L

b ; ii. The coefficients in the Fourier cosine expansion  
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of f on ],0[ L  satisfy  





1

0

222

0 )(
2

2

1

n

L

n dxxf
L

aa ; iii. If f is integrable on ],[ LL , then the 

Fourier coefficients of f on ],[ LL  satisfy  






1

2222

0 )(
1

)(
2

1

n

L

L
nn dxxf

L
baa  

4. Theorem 13.8: Uniform and absolute convergence of Fourier series: Let f be continuous on 

],[ LL  and let 'f  be piecewise continuous. Suppose )()( LfLf  . Then, the Fourier 

series of f on ],[ LL  converges absolutely and uniformly to )(xf  on ],[ LL . 

5. Theorem 13.9: Parseval’s theorem: Let f be continuous on ],[ LL  and let 'f  be piecewise 

continuous. Suppose )()( LfLf  . Then, the Fourier coefficients of f on ],[ LL  

satisfy  






1

2222

0 )(
1

)(
2

1

n

L

L
nn dxxf

L
baa  

6.5 The Phase Angle Form of a Fourier Series 

1. Periodic, fundamental period 

2. Definition 13.7: Phase angle form: Let f have fundamental period p. Then the phase angle 

form of the Fourier series of f is 





1

00 )cos(
2

1

n

nn xnca  , in which 
p




2
0  , 

22

nnn bac  , and 









 

n

n

n
a

b1tan  for ,2,1n . 

Harmonic form, nth harmonic, harmonic amplitude, phase angle. 
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6.6 Complex Fourier Series and the Frequency Spectrum 

1. Conjugate, magnitude, argument, polar form. 

2. Definition 13.8: Complex Fourier series: Let f have fundamental period p. Let 
p




2
0  . 

Then the complex Fourier series of f is 


n

xin

ned 0 , where 



2/

2/

0)(
1 p

p

tin

n dtetf
p

d


 for 

,2,1,0 n . The numbers nd  are the complex Fourier coefficients of f. 

3. Theorem 13.10: Let f be periodic with fundamental period p. Let f be piecewise smooth on 

]2/,2/[ pp . Then at each x the complex Fourier series converges to ))()((
2

1
 xfxf . 

 

 


